
.-----===------------------------------------===-----------===------.
/__/	___ ___ / /\ / /\		
		:	/__/\ / /\ / /::\ / /:/
		:	\ \:\ / /:/ / /:/\:\ / /:/
__		:	\ \:\ /__/::\ / /:/~/:/ / /:/ ___
/__/_	:	____ ___ __\:\ __\/\:__ /__/:/ /:/___ /__/:/ / /\	
\ \:\/:::::/ /__/\		:	\ \:\/\ \ \:\/:::::/ \ \:\ / /:/
\ \::/~~~~ \ \:\|	:	__\::/ \ \::/~~~~ \ \:\ /:/	
\ \:\ \ \:__	:	/__/:/ \ \:\ \ \:\/:/	
\ \:\ __\::::/ __\/ \ \:\ \ \::/			
__\/ ~~~~ __\/ __\/			
`---'			
.----------------,-------------------------------.------------------.			
(The Art of Scripting Vol.2) by Grifisx			
`----------------`-------------------------------'------------------'
Version: etherea-0.1a/20062201Version: etherea-0.1a/20062201

Objects, Classes, Array and DictionariesObjects, Classes, Array and Dictionaries
Start:

In this tutorial we'll have an eye on the main concept of objects,
classes, arrays, dictionaries and files writing and reading; with
much code and small scripts, as that's the best way to learn coding.
First, let's introduce the concept of object, a very important lesson
on how to write more complex code.
What is an object? Have a look at the following code:

%myobject = $new(object,0,objectname);
if(%myobject)echo "Object created!";
else echo "Object creation failed!";

Put it in the “Script Tester” (yes, the one with the black bomb icon)
and run it to see the result.

Here's a deep look of what we have yet wrote:
%myobject = $new(object,0,object_name);
To create an object you need to use the $new() function that requires
three parameters:
- an object class (there's a forthcoming issue on Classes) ;
- father object ID (can also be “0” for toplevel objects -ie no
father ones- but we'll have a look later);
– the name of the onject (can be empty).
Objects can be treated as pseudo-structures (like C structures);
don't be afraid not to be familiar with a structure, code will
clarify everything. Want to create an user object containing many
fields such as Nick, Username and so on?

User object creation
%User = $new(object,0,user_description)
Let's set some more parameters
%Utente->%nickname = Grifisx
%Utente->%username = mDm-Team
%Utente->%hostname = do.not-disturb.net
%Utente->%info = Grifisx took this example from KVIrc handbook

%Utente->%info << Tnx to Pragma

Put this code in the Script Tester and run it, then in the input line
of any window type:
/echo %User->%nickname
As you can see it returned nickname field echo, as for every other
single field requested; while doing an object echo we have:
/echo %User
it returns in output the object ID (in this case 1710.1128236637).
As you can see it is very, very snuggy to use objects, especially if
there's the need to create very complex scripts.

An eye on classes now.
A class, as stated in the official handbook, is a collection of
methods that defines any object properties:

class (calc,object)
{

constructor()
{

echo Usage\:
echo To compute the sum of two numbers:
echo \/\%Calc\-\>\$somma2\(\x\,\y\)
echo To compute the quotient of two numbers:
echo \/\%Calc\-\>\$div\(\x\,\y\)

}
somma2()
{

$0 and $1 are the values to assign the function by recall it
for example “\%Calc->$somma2(8,6)” $0=8 e %1=6

echo $($0+$1)
}
div()
{

echo $($0/$1)
}

}
%Calc=$new(calc)

The execution of this script will give you the chanche either to sum
or to divide two numbers using those teo functions you have created:
$somma2() and $div().
From the input line try this:
/%Calc->$div(10,5)
As it shows, there has been the creation of a calc class, that is
object type (also it could be a widget type for the graphical
objects, but will see this a little more later) and on its inside
there are three newly created functions (or methods if you prefer):
$constructor(), $somma2() and $div(); later create the object with
the code “%Calc=$new(calc)” and all the functions created inside the
class are ready to be used, recalling them by the symbol “->”.

Arithmetic function $(<arithmetic_expression>) does execute the
compute of the expression within the brackets.

Furthermore notice the code inside $constructor() is added upon the
creation of the class itself automatically and that's the right place
to initialize variables.

For example:

class(addressbook,object)
{

addName()
{

$$->%name=$0-
}
addSurname()
{

$$->%surname=$0-
}
addTel()
{

$$->%tel=$0-
}

}
%AddressBook=$new(addressbook)

What are those $$-> and $0-?
$0- is the parameter the function receives (remembering aliases? It
works out the same way: when we are going to recall the function
$addName() we'll need to give it the name to be added).

$$ means “Variable belonging to this class”, ie if you need to create
a class variable (showed only inside the class itself) you have to
create it with $$-> or $this->; same way if you want to recall a
function of a given class inside another function: $$->$function().

Array and Dictionary are really important concepts, because those
allow the creation of a collection of values, strings or objects,
mean data.

An array is a collection of variables data indexed by number; the
first index of the array is “0” while the last index is equal to the
lenght of the array itself minus one (as it starts from zero).
To obtain the number of the elements contained in an array the right
expression to use is %ArrayExample[]#.
It is not necessary to declare the lenght of the array as in many
other programming languages, going on adding a number the lenght of
the array will vary by itself and if the first assigned element will
have an index greater than “0” all the other positions will be left
empty.

For example:
%Array[0]=Grifisx
%Array[1]=Noldor
%Array[2]=Pragma
#Print the whole content of the array
echo %Array[]
#Print the lenght of the array
echo %Array[]#
#Print only the first element

echo %Array[0]

Or try this one:
%Array[0]=Grifisx
%Array[1]=Do not show this
%Array[2]=Noldor
%Array[5]=Secret shhhh..
%Array[8]=Pragma
for(%i=0;%i < %Array[]#;%i+=2)echo Entry %i: \"%Array[%i]\";

As you can see is almost easy to create collections indexed by
numbers, as it is very simple to move inside them; here is a for
cycle but there was the possibility to use a
foreach(%item,%Array[])echo %item one or a while.

It is possible to initialize an array this way:
%Array[]=$array(Grifisx,Noldor,Pragma,Madero);
namely using the $array(<el1>,<el2>,<el3>,<el4>,..) function.

And now Dictionary takes its turn.
Dictionaries are associative arrays of strings; let's have a look
with an example taken from the official handbook:

%Songs{Jimi Hendrix} = Voodo child
%Songs{Shawn Lane} = Gray piano's flying
%Songs{Imogen Heap} = Hide and Seek
%Songs{Greg Howe} = "Full Throttle"
Show everything in a string
echo %Songs{}
Show every element of the dictionary
foreach(%var,%Songs{})echo %var

As in the array %Songs{}# will return the number of the elements of
the dictionary; while %Songs{}@ whill return a list divided by
commas.
Dictionaries and arrays can be used together, to have a dictionary of
arrays.
We can manage those collections in the way we like best. Maybe they
may be seem such difficult concepts but will end it “easy” to use.

Now it is useful to know how to save and read from a text file, as we
have some collections and we want to store them, first of all it's
necessary to put them into files.

$file.read(“file_to_be_read”)
file.write(“file_to_be_written”)
Thee first function allows to read from a text file while the second
one (it is a command, not a function as it don't starts with a $)
allows to write in.
If we have a text file (labeled “usersdatabase”) containing a list of
names separated by commas (like “Grifisx,Noldor,Pragma,Madero”) and
if we want to put all those nicknames in an array we need to do:

%users[] = $split(",",$file.read($file.localdir(usersdatabase)))
The $split function will be changed into $str.split() -so pay

attention is it gives out an error- and does the split of a string
followiing the separator definition given (in this case is comma
“,”); while the function $file.localdir() returns the local
configuration of KVIrc (quick try “/echo $file.localdir()”).
In this way we have created the array %users[], containing on its
inside the nicknames read by the text file.

While to write on a file we have:
file.write $file.localdir(usersdatabase) %users[]
Now in the Script Tester:
%Users[]=$array(Grifisx,Noldor,Pragma,Madero);
file.write $file.localdir(usersdatabase) %Users[];
%UsersNew[] = $split(",",$file.read($file.localdir(usersdatabase)));
%idx=0;
while(%idx!=%UsersNew[]#)
{

echo User: %UsersNew[%idx];
%idx++;

}
file.remove $file.localdir(usersdatabase)

By running the script the file has been created, read and then
removed with the command file.remove (to see other available commands
check the KVIrc manual in Commands -> letter f).

We do know enough to create something a little more complex: a tiny
clipboard manager.

class(notes,object)
{

constructor()
{

In the constructor all instructions are on display, remembering
the constructor is the first thing to be execute as the class is
created

echo $k(5,8) \-\-\-Notes\-\-\-\
echo $k(5,8) Manual comomands:
echo $k(5,8) \/\%Notes\-\>\$viewApp $b Show

available notes
echo $k(5,8) \/\%Notes\-\>\$addApp\(note\) $b Adds a

new note
echo $k(5,8) \/\%Notes\-\>\$delApp\(note\) $b Erases

a note
}

Function to add a note
addApp()
{

Creation of an array filled with file content
$$->%appuntos[] =

$split(",",$file.read($file.localdir(kvircAppuntidb)))
$$->%ap = 0

Now the creation os a simple dictionary, as it is more easy to work
with strings and are easily characterizing, in the same time
there's a practical application of the dictionaries uses; then it
will be filled with the array content and that will result in:
%Array{hello}=hello , so that by the time to erase it I won't be
worry about its numeric index as my index is equal to the element

and I'll be able to catch in every moment.
while($$->%ap < $$->%appuntos[]#)
{

$$->%ListNotes{$$->%appuntos[$$->%ap]} = $$-
>%appuntos[$$->%ap]

$$->%ap++;
}
$$->%ProvaAP = $0-
$$->%ListNotes{$$->%ProvaAP} = $$->%ProvaAP

All notes on display
foreach($$->%var,$$->%ListNotes{}) echo $k(5,8)$$->%var

File storing
file.write $file.localdir(kvircAppuntidb) $$-

>%ListNotes{}
echo $k(5,8) End of List : $$->%ListNotes{}# \) Notes

stored
}

Function to erase a note
dellApp()
{

As the previous function
$$->%appuntos[] =

$split(",",$file.read($file.localdir(kvircAppuntidb)))
$$->%ap = 0
while($$->%ap < $$->%appuntos[]#)
{

$$->%ListNotes{$$->%appuntos[$$->%ap]} = $$-
>%appuntos[$$->%ap]

$$->%ap++;
}
$$->%ProvaAP = $0

Easy to delete without worrying about the index as I do use the
same name

$$->%ListNotes{$$->%ProvaAP} = ""
Empty

foreach($$->%var,$$->%ListNotes{}) echo $k(5,8)$$->%var
file.write $file.localdir(kvircAppuntidb) $$-

>%ListNotes{}
echo $k(5,8) End of list: $$->%ListNotes{}# \) Notes

stored
}

Function to see the notes
viewApp()
{

Same as above
$$->%appuntos[] =

$split(",",$file.read($file.localdir(kvircAppuntidb)))
$$->%ap = 0
while($$->%ap < $$->%appuntos[]#)

 {
$$->%ListNotes{$$->%appuntos[$$->%ap]} = $$-

>%appuntos[$$->%ap]
$$->%ap++;

}
foreach($$->%var,$$->%ListNotes{})echo $k(5,8) $$->%var
echo $k(5,8) End of List : $$->%ListNotes{}# \) Notes

stored

}
}
Object %Notes created
%Notes=$new(notes)

There is nohing more to explain as if you did understood the concept
of array, dictionary and file read and write (and classes), the
script will explain by itself.
You can write a better script surely (or use more functional
constructs) but we used only the most important ones to make a great
one script.
It will be surely better when you'll have understand all the other
concepts KVIrc hides =)
/ECHO STOP.

- - - - - - -- - - - - - - -- - - - - - - - - -- - - - - -- - - - -
"You see things; and you say `Why?' But I dream things that never
were; and I say `Why not?"
(George Bernad Shaw)
- - - - - - - - -- - - - - - - -- -- - - - - - - - - - - - - - - - -
Grifisx

